Перейти к содержанию
Форум Челябинских Автомобилистов

Прямоток на ТАЗах(ВАЗах)


Рекомендуемые сообщения

Я считаю, что это вещь абсолютно бесполезная. Даёт мизерную прибавку(2-4 л.с., если правильно сделано) и много шума. Стоит ли делать прямоточный выхлоп на ВАЗах? По-моему, это просто удел любителей порисоваться.
Ссылка на комментарий
Поделиться на другие сайты

Вещь полезная, но прямоток стоит около 20руб.И имеет смысл делать его в послледнюю очередьимхо впуск и выпуск делается в последнюю очередьЛучше переделать коробку передач за эти деньги, эффект гораздо ощутимиеПрямоток не обязательно будет громкимПрибавка мощности идет в несколько процентов от мощности двигателя Изменено пользователем Тушкан
Ссылка на комментарий
Поделиться на другие сайты

А у меня товаришь один говорит что он от этого звука прям КОНЧАЕТ =)))А вообще неприятно это когда машина издаёт нестандартный звук, по себе знаю =) хехехе
Ссылка на комментарий
Поделиться на другие сайты

Вещь полезная, но прямоток стоит около 20руб.И имеет смысл делать его в послледнюю очередьимхо впуск и выпуск делается в последнюю очередьЛучше переделать коробку передач за эти деньги, эффект гораздо ощутимиеПрямоток не обязательно будет громкимПрибавка мощности идет в несколько процентов от мощности двигателя

Нет, начинать то наверное лучше с чипа и установки другого ресивера(на инжекторах). Дорогой и качественный выпуск- вещь полезная. Но в основном то как делают? Купят банку Prosport, а заместо резонатора какую-нибудь трубу побольше поставят и ездят, гудят, понтуются. От такого выпуска толку мало. Особенно, если даже на банку денег нет, тогда вообще какую-нибудь сантехническую трубу приварят. Только людей смешат. А думают что это круто.
Ссылка на комментарий
Поделиться на другие сайты

Полностью согласен. Шуму дохрена, а ехать быстрее не будет.

А я думаю себе поставить, как только жене машину куплю.Вся машина проклеена в 2 слоя, поэтому думаю в салоне будет нормальноУ меня мотор после 3000об/мин тоже ревет будь здоров

Нет, начинать то наверное лучше с чипа и установки другого ресивера(на инжекторах). Дорогой и качественный выпуск- вещь полезная. Но в основном то как делают? Купят банку Prosport, а заместо резонатора какую-нибудь трубу побольше поставят и ездят, гудят, понтуются. От такого выпуска толку мало. Особенно, если даже на банку денег нет, тогда вообще какую-нибудь сантехническую трубу приварят. Только людей смешат. А думают что это круто.

Ресивер+чип=расход топлива вырастетА пара+ряд+диф=динамика ого-го, а расход нормальныйЕздят, гудят - мне нравиться громкий выпуск, басовитый
Ссылка на комментарий
Поделиться на другие сайты

А я думаю себе поставить, как только жене машину куплю.Вся машина проклеена в 2 слоя, поэтому думаю в салоне будет нормальноУ меня мотор после 3000об/мин тоже ревет будь здоров

Ну а толку то, ну может ты в салоне и не будешь так слышать, а представляешь что с наружи то будет? Кошмар. После 3000 и у меня реветь начинает, но этот рев то по делу, а не просто так как у рычащего глушака.
Ссылка на комментарий
Поделиться на другие сайты

Ну а толку то, ну может ты в салоне и не будешь так слышать, а представляешь что с наружи то будет? Кошмар. После 3000 и у меня реветь начинает, но этот рев то по делу, а не просто так как у рычащего глушака.

Есть же банки со флейтами: пробку вытащил-заревел, вставил-притихИногда так приятно под рев прохватить, аж до мурашек :grin: Я по городу до 4000-4500 об/мин кручу, если чуть-чуть тороплюсьЕсли не спешу - до 3500
Ссылка на комментарий
Поделиться на другие сайты

Есть же банки со флейтами: пробку вытащил-заревел, вставил-притихИногда так приятно под рев прохватить, аж до мурашек :grin: Я по городу до 4000-4500 об/мин кручу, если чуть-чуть тороплюсьЕсли не спешу - до 3500

Кстати флейта не сильно глушит
Ссылка на комментарий
Поделиться на другие сайты

А об окружающих кто думает? Я бы всем таким ревущим прямотоки позабивал...Носятся блин по ночам - нормальным людям покоя нет!
Ссылка на комментарий
Поделиться на другие сайты

А об окружающих кто думает? Я бы всем таким ревущим прямотоки позабивал...Носятся блин по ночам - нормальным людям покоя нет!

+1
Ссылка на комментарий
Поделиться на другие сайты

2 ladaracerизвечный спор о пользе прямотока.... почти боян :]|||[: :) Сам ездю с трубой и флейтой и звук зависит больше от того, но сколько ты тапочку в пол давишь. Даже на стандартном глушаке если крутить моторчик до отсечки, машина будет орать и соседи тебе спасибо не скажут...
Ссылка на комментарий
Поделиться на другие сайты

Ну а толку то, ну может ты в салоне и не будешь так слышать, а представляешь что с наружи то будет? Кошмар. После 3000 и у меня реветь начинает, но этот рев то по делу, а не просто так как у рычащего глушака.

ну ты же со мной ездишь у меня че сильно рычит что ли согласин когда там труба стоит больше чем у КАМАЗА тогда точно перебор

2 ladaracerизвечный спор о пользе прямотока.... почти боян :]|||[: :) Сам ездю с трубой и флейтой и звук зависит больше от того, но сколько ты тапочку в пол давишь. Даже на стандартном глушаке если крутить моторчик до отсечки, машина будет орать и соседи тебе спасибо не скажут...

полностью с тобой согласен посмотришь ездят ржавые копендосы у которых глушак прогнил уже до таво что там любой стрит ресер позавидут и не какого прямотока не надо
Ссылка на комментарий
Поделиться на другие сайты

почти ОФФнарод, кто-нить знает хорошего сварщика? напарнику надо паука переварить чуток, уже четвёртую стандартную трубу со штанами меняем, прогорает...
Ссылка на комментарий
Поделиться на другие сайты

почти ОФФнарод, кто-нить знает хорошего сварщика? напарнику надо паука переварить чуток, уже четвёртую стандартную трубу со штанами меняем, прогорает...

Леш,смотря ЧЕМ варить..если полуавтоматом,то это к кузовщикам(Хотя они есть знакомые),а если автоматом..то такие есть.
Ссылка на комментарий
Поделиться на другие сайты

А об окружающих кто думает? Я бы всем таким ревущим прямотоки позабивал...Носятся блин по ночам - нормальным людям покоя нет!

Не знаю я товарисчи. Езжу почти каждую ночь по всему городу, сплю редко и редко когда увижу или услышу громко рычащих носящихся, от которых нормальным людям покоя нет. кто в последнее время из-за этого часто просыпался? Есть конечно гонщеги из ONE CLUB на наших ТАЗах классических, которые гоняют, вот они рычат да, а если поставить нормальную систему выпуска да банку оконечную REMUS или SIMONI так звук там не громкий-орущий, а благородно-рычащий! :new_russian:
Ссылка на комментарий
Поделиться на другие сайты

ну ты же со мной ездишь у меня че сильно рычит что ли согласин когда там труба стоит больше чем у КАМАЗА тогда точно перебор

Не в размере трубы дело ! Есть "самцы" с диаметром трубы чуть больше стандарта, но звук от них мерзкий трещащий, аж уши режет!

а если поставить нормальную систему выпуска да банку оконечную REMUS или SIMONI так звук там не громкий-орущий, а благородно-рычащий!

У меня стоит проспорт ультра и басовитое урчание меня вполне устраивает, но громковато :( по этому поставил флейту и катаюсь себе спокойненько... :)
Ссылка на комментарий
Поделиться на другие сайты

может кому пригодится :close_tema: Первая и самая простая — отвод выхлопных газов за пределы кузова автомобиля. Вторая задача выпуска — обеспечение наилучшего наполнения цилиндров топливовоздушной смесью. В современных моторах фазы впуска и выпуска заметно перекрываются и в момент, когда открыты оба клапана, важно создать за выпускным клапаном разрежение, благодаря которому отработанные газы будут активнее покидать цилиндр, освобождая место для свежей порции смеси. Чтобы этого добиться, используют инерцию и неравномерность истечения выхлопных газов из двигателя. Дело в том, что после закрытия выпускного клапана, в коллекторе образуется зона понижено го давления, двигающаяся по трубе со скоростью звука. Если создать на пути этой волны препятствие, она отразится и, при правильном расчете соотношения между оборотами двигателя и расстоянием до этого препятствия, окажется у выпускного клапана в момент, когда он будет снова открыт. Для автомобильного двигателя это расстояние оказывается очень большим, поэтому фронт разрежения от одного цилиндра возвращают к двигателю в момент открытия клапана другого. Этот процесс организуется с помощью выпускного коллектора с трубами равной длины, а препятствием для волны служит соединение этих труб в одну. monthly_07_2007/post-2223-1184749119.jpgЗамер шума в ближнем поле: микрофон установлен на расстоянии 25 см от среза выхлопной трубы ОТКУДА РЕВ? В штатной системе выпуска низкочастотную составляющую шума в основном глушит резонатор, но и на долю глушителя, главная задача которого — пригасить высокочастотный сигнал, “низов” тоже хватает. А в прямоточном глушителе набивка из минеральной ваты способна эффективно тушить только высокочастотные составляющие звука, поэтому низкочастотный шум попросту “пролетает” по прямой трубе практически без помех. Именно из-за этого голос “прямотоков” получается низким. Недаром говорят, что спортивный глушитель “басит”, “бубнит” или “рычит”. Особенно явно это чувствуется в салоне, куда высокочастотные составляющие проникают хуже низкочастотных. И все бы ничего, если бы не одно но... У салона, как замкнутого объема, да и у панелей кузова неизбежно имеются собственные резонансные частоты. Звук выхлопа имеет в своем спектре ярковыра-женные максимумы, их еще называют гармониками, частота которых кратна оборотам двигателя. Как только частота гармоники становится близкой к собственной частоте кузова, шум резко усиливается, а в его спектральной характеристике появляется ярковыра-женный максимум. Как оказалось, у ВАЗ-2112 в “проблемной” для прямоточного глушителя области оказались две мощные гармоники, из-за которых шум в салоне резко увеличивается в районе 2500—2800 об/мин и 4200—4500 об/мин. Если провести на этих режимах спектральный анализ, легко увидеть в диапазоне 60—400 Гц пару пиковых частот, которые оказываются кратны этим оборотам. Очевидно, при разработке стандартного глушителя на “десятку” инженеры ВАЗа смогли максимально “задавить” эти гармоники за счет отражений звуковых волн внутри глушителя, а тюнинговые “прямотоки” пропускают их без особых помех. Наконец, третьей задачей выпускной системы является собственно глушение шума. Ни простая труба, ни настроенный выпускной коллектор справиться с ней не в состоянии — требуется глушитель. Правда, на гоночных автомобилях встречаются системы, по сути, без глушителей, но, как правило, только на турбированных моторах, где турбина, “перемалывая” поток выхлопных газов, сама снижает его энергию и сглаживает колебания. Итак, чтобы снизить шум, требуется глушитель. Они бывают нескольких типов. Первый тип — резонатор, состоящий обычно из перфорированной трубы и окружающей ее камеры. За счет резонанса, возникающего в камере, такой глушитель эффективно гасит звук определенной частоты. Как правило, современные резонаторы имеют несколько камер различного размера и при скромных габаритных размерах неплохо гасят низкочастотные шумы. Стандартный оконечный глушитель обычно представляет собой лабиринт из перегородок, при отражении от которых часть энергии газа переходит в тепло, а звук затихает. Кроме того, за счет установки внутри глушителя перфорированных труб, в нем также как в резонаторе применяется эффект подавления звука определенных частот. Прямоточный глушитель во многом похож по конструкции на резонатор. Отличие лишь в том, что между корпусом и трубой с отверстиями у него проложен звукопоглощающий материал. Как правило, это базальтовая вата, состоящая из длинных минеральных волокон. Чтобы волокна не выдувались потоком газа наружу, между трубой и ватой размещают заградительный барьер из очень мелкой сетки или специальной проволоки. И все равно, ресурс прямоточного глушителя определяется не коррозией металлического корпуса, а сроком удержания волокон, по истечении которого глушитель начинает звенеть, как пустое ведро. Звучание прямоточного глушителя задается его размерами, количеством и материалом набивки, а также диаметром и числом отверстий в трубе. Но как не настраивай “прямоток”, общая тенденция остается. Вата хорошо поглощает высокие частоты, а с низкими справляется плохо. Зато прямоточный глушитель оказывает наименьшее сопротивление выхлопным газам. Среди владельцев вазовских машин распространено мнение, что стандартная система выпуска сильно “душит” мотор. Особенно 16-клапанный, ведь выпуск на нем такой же, как и на менее мощном “восьмиклапаннике”. Поэтому, установка прямоточного глушителя с заметно меньшим сопротивлением выходу отработанных газов — сильный козырь в светофорных гонках. monthly_07_2007/post-2223-1184749233.jpgЕсть и прямо противоположное Уровень и спектр шума регистрировался спектроанализатором Larson Davis 2900B в режиме реального времени. Хорошо видны резонансные гармоники сигнала мнение: на стандартном моторе прямоточный глушитель прибавки мощности не дает. Единственная его задача — пустить пыль в глаза, а точнее — рев в уши. “Прямоток” — самый простой способ заставить поверить окружающих, что у машины мощный мотор и соответствующая динамика. К сожалению владельца машины, чтобы развеять эту иллюзию, часто хватает одного параллельного старта... POWERFUL monthly_07_2007/post-2223-1184749248.jpgЦена-$96 Диаметр входной трубы — 48 мм Диаметр оконечной насадки — 102 мм Максимальный уровень внутреннего шума — 81,8 дБ Максимальный уровень внешнего шума— 108,9 дБ Это, пожалуй, самый популярный прямоточный глушитель на московском рынке. Секрет успеха, скорее всего, кроется в привлеки-тельной цене и эффектном внешнем виде. Чего стоят одни буквы Power-Ful, “пробитые” в торце хромированного жерла, выглядывающего из-под бампера. Неожиданностью стало то, что диаметр входной трубы оказался на три миллиметра больше, чем у стандартного глушителя. Да и изогнута труба по другому, более резко, зато без уменьшения площади поперечного сечения. Испытания показали, что Powerful — самый тихий из нашей шестерки. Из всех “прямотоков” он наиболее близок к штатному глушителю по звуковому спектру, хотя снаружи Powerful все равно ревет намного громче “стандарта”. А максимальный уровень внутреннего шума с зтим глушителем оказался даже чуть ниже, чем со штатным! Похоже, что упор при создании глушителя был сделан именно на приемлемый уровень звукового давления. Мощности PowerFul почти не прибавляет, а на низких оборотах даже оказывается чуть хуже штатного глушителя. Последнее мнение разделяют профессионалы: в любой серьезной тюнинговой фирме вам предложат программу доработок двигателя, в которой установка прямоточного глушителя будет стоять далеко не на первом месте. Другое дело — серьезно “заряженный” мотор. Если двигатель имеет увеличенный рабочий объем или форсирован по оборотам, стандартная система выпуска уже может не справляться с более мощным потоком газов, создавая ему слишком высокое сопротивление при высоких оборотах двигателя. Но и в этом случае один прямоточный глушитель не способен решить проблему — необходима замена всей системы выпуска на спортивную, чтобы дыхание мотора ничто не стесняло. Для этого устанавливают другой выпускной коллектор, прозванный в народе за свой внешний вид “пауком”, применяют трубы большего диаметра, убирают катализатор. И все же, очень часто приходится видеть спортивные глушители на совершенно стандартных машинах. Дают ли они хоть что-то кроме громкого звука? И, кстати, насколько громок этот звук? Чтобы разобраться во всем этом, мы отправились на Дмитровский автополигон, в лабораторию виброакустики. Там, в специальной безэховой камере, можно не только определить уровень и спектр производимого машиной шума, но и с помощью мощностного стенда Schenck (Германия) измерить крутящий момент на заданных оборотах двигателя, а следовательно рассчитать развиваемую автомобилем мощность. В качестве базы мы взяли совершенно стандартный ВАЗ-2112 с 16-клапанным мотором и решили испытать на нем четыре наиболее распространенных на московском рынке прямоточных глушителя. Это продукция известных итальянских марок PowerFul и ASSO, российский прямоточный глушитель SVR и, конечно, немецкий Remus. Кроме того, чтобы понять, какое влияние оказывает на работу мотора остальная часть выпускной системы, мы включили в программу испытаний две полные системы. Это система SVR с диаметром трубы, увеличенным до 54 мм против стандартных 45, а также итальянский комплект Supersprint, диаметр труб у которого еще больше — 60 мм. Мощность измерялась на трех режимах работы monthly_07_2007/post-2223-1184749283.jpg monthly_07_2007/post-2223-1184749294.jpgmonthly_07_2007/post-2223-1184749312.jpgmonthly_07_2007/post-2223-1184749326.jpgASSO monthly_07_2007/post-2223-1184749343.jpg Ц ена — $100 Диаметр входной трубы — 42 мм Диаметр оконечной насадки — 102 мм Максимальный уровень внутреннего шума — 83,4 дБ Максимальный уровень внешнего шума— 111 дБ Итальянская марка ASSO пока не так известна на отечественном рынке, как Powerful, хотя производственная линейка фирмы не менее разнообразна. Есть в ней и глушитель для ВАЗ-2112. Как и Powerful, ASSO щеголяет оконечной насадкой большого диаметра, но сам глушитель более скромного размера, а его входная труба оказалась по диаметру даже меньше, чем у штатного. По характеристикам ASSO является полной противоположностью предыдущему образцу. Во-первых, прибавка от его установки, пусть и небольшая, есть во всем диапазоне оборотов, а не только “вверху”. Во-вторых, ASSO — наиболее громкий из испытанных нами оконечных глушителей. И, если по уровню внешнего шума с ним еще могут поспорить системы с трубами большого диаметра, то в салоне ASSO перекрикивает всех. При этом его спектр наиболее “горбатый”, из-за чего звук выпуска кажется более “злым”. Этим же, скорее всего, и объясняется высокий общий уровень шума. Чтобы установить глушитель Remus, пришлось сверлить кузов автомобиля и мастерить систему креплений двигателя: 1500 об/мин (на этих оборотах обычно происходит трогание), 3700 об/мин (обороты максимального крутящего момента по паспортным данным) и 5400 об/мин (90 процентов от максимальных оборотов двигателя). Одновременно с помощью профессионального измерителя-анализатора шума Lar-son Davis 2900B фиксировался уровень и спектр производимого автомобилем шума. По правилам ЕЭК-ООН №51 внешний шум измерялся при работе автомобиля на третьей передаче в диапазоне оборотов двигателя 1500—5400 об/мин. Верхняя планка оборотов по этим правилам определяется как 90 процентов от оборотов максимальной мощности, а передача выбирается из расчета развиваемой автомобилем на дороге скорости. Впрочем, наши измерения нельзя считать сертификационными, поскольку эти правила предполагают замеры шума на дороге с определенным крытием. Однако для сравнения разных систем выпуска такая методика вполне пригодна. Замеры производились в двух точках позади автомобиля. Первый микрофон устанавливался под углом 60 градусов к продольной оси автомобиля на расстоянии 25 см от среза выхлопной трубы. Второй микрофон фиксировал шум точно по оси машины на расстоянии четырех метров позади нее и на высоте 1м 20 см. Условно говоря, первый микрофон измеряет шум самого глушителя (так называемый замер в ближнем поле), а второй — шум всего автомобиля в целом (замер в дальнем поле). REMUS monthly_07_2007/post-2223-1184749374.jpg Цена—$140 Диаметр входной трубы — 45/54* мм Диаметр оконечной насадки — 89 мм Максимальный уровень внутреннего шума — 84,0 дБ Максимальный уровень внешнего шума — 109,8 дБ * диаметр входной трубы/диаметр патрубка на входе в корпус Глушители фирмы Remus уже несколько лет продаются на российском рынке, однако “банки”, адаптированной для “двенадцатой”, среди них до сих пор нет. Можно взять экземпляр для “десятки”, но тогда нужно будет укорачивать хромированную насадку. Второй вариант — универсальный глушитель — по сути, корпус с оконечной насадкой и коротким входным патрубком. Чтобы установить его, нужно либо потратить еще около 1000 рублей на трубу, либо использовать куски старого глушителя, а кроме того, необходимо придумать собственную схему крепления “банки”. Мы выбрали последний вариант итоге потратив на установку Ремуса полдня. Как оказа лось, наши титанические усилия не окупились. Если на высоких оборотах прибавка мощности еще заметна, то на низких она близка к нулевой. В салоне Remus рычит почти также громко, как ASSO, при этом моторные гармоники выделяются из общего спектра еще сильнее, а высокочастотные составляющие немного приглушены. Последнее, по-видимому, и придает звуку выхлопа породистость, из-за которой так ценится Remus. SVR monthly_07_2007/post-2223-1184749400.jpg Цена —$130 Диаметр входной трубы — 43 мм Диаметр оконечной насадки — 54 мм Максимальный уровень внутреннего шума — 84,0 дБ Максимальный уровень внешнего шума — 100,2дБ Глушитель, изготовленный московской фирмой SVR Conversions, внешне малопривлекателен: маленький корпус из нержавеющей стали оканчивается обычной стальной трубой. Впрочем, изготовители готовы по желанию клиента приварить в конец трубы любую насадку: хоть фирменную, хоть дешевую турецкую. Но при этом “гадкий утенок” оказался самым эффективным среди оконечных глушителей! SVR дает наибольшую прибавку мощности на всех режимах, при этом по уровню создаваемого звукового давления он сравним с наиболее тихим глушителем Powerful! Да и монтировать глушитель небольшого размера с маленькой выходной трубой проще, чем импортные аналоги. Единственным недостатком с точки зрения звука можно считать резкий пик звукового давления на месте водителя в диапазоне от 4100 до 4600 об/мин. SVR (полная система) monthly_07_2007/post-2223-1184749420.jpg Цена —$500 Диаметр трубы — 52 мм Диаметр оконечной насадки — 54 мм Максимальный уровень внутреннего шума — 84,4 дБ Максимальный уровень внешнего шума — 115,9 дБ Полная система выпуска SVR с выпускным коллектором, выполненным по схеме 4-2-1, и трубами большего диаметра предлагается производителем только с установкой. Мы понадеялись на собственные силы, за что и поплатились. После сборки выпуск стал “сечь” в шаровом соединении коллектора с резонатором. Пришлось ставить более мощные стягивающие пружины и использовать герметик. Кстати, “шар” расположен дальше, чем у стандартной системы, и его иное расположение по отношению к опорам силового агрегата, по признанию создателей, чаще приводит к обрыву резинок, на которых выпуск подвешивается к кузову. Кроме того, неудобно расположено отверстие под кислородный датчик и, чтобы подключить лямбда-зонд, пришлось расплести жгут проводки. Оконечный глушитель в этой системе симпатичнее предыдущего благодаря корпусу и выходной трубе из полированной нержавейки. Испытания на стенде показали, что полная система SVR добавляет больше мощности, чем один прямоточный глушитель. Особенно это заметно на высоких оборотах, где прибавка достигла максимального в нашем тесте показателя — 6,4 процента. Однако “большая” труба производит и большой шум. Сростом оборотов полная система перекрывает по шуму все оконечные глушители. В частности, на максимальных оборотах система SVR оказывается на пять децибел громче глушителя той же фирмы. При этом внутренний шум сохраняется на уровне остальных “прямотоков”. Это закономерно, ведь звук попросту “улетает” через большую трубу назад... Полная система SVR включает в себя “паук” с длинными трубами SUPERSPRINT monthly_07_2007/post-2223-1184749442.jpg Цена — $950 Диаметр входной трубы — 60 мм Диаметр оконечной насадки — 95x80 мм Максимальный уровень внутреннего шума — 82,2 дБ Максимальный уровень внешнего шума — 115,8 дБ Комплект Supersprint, взятый нами на тест, является, по сути, опытным экземпляром. Поэтому он, уже прокаленный выхлопными газами, потерял часть своего блеска, а трубы имеют лишние сварные швы после сборки “по месту”. Впрочем, первая партия серийных систем поступит в Россию уже в апреле, да и цена системы известна. Supersprint существенно дороже, чем SVR не только из-за своего итальянского происхождения. Во-первых, этот комплект полностью сделан из нержавеющей стали, включая коллектор и все трубы. Во-вторых, диаметр основной трубы еще больше — 60 мм. Эта система изначально создавалась в расчете на максимально заряженные моторы, в том числе большого объема. Даром, что опытный образец Supersprint устанавливается на “двенадцатую” за полчаса и без каких-либо проблем. В отличие от системы SVR, итальянский “паук” сделан по схеме 4-1, трубы коллектора заметно короче. В теории такая схема должна дать прибавку мощности на более высоких, чем у SVR, оборотах, скорее всего, уже за границей рабочего диапазона стандартного мотора. Измерения показали, что по мощности автомобиль с итальянской системой остался на уровне предыдущего варианта, разница лишь в нюансах. Так что 60 миллиметров стандартному мотору без надобности. При этом, если по внутреннему шуму паритет У системы Supersprint короткий “паук” настроен на очень высокие обороты мотора. Оконечная насадка по размеру идеально подходит к выемке на заднем бампере между полными системами также сохраняется, то снаружи, за счет большего диаметра трубы, Supersprint no громкости оказывается лидером. monthly_07_2007/post-2223-1184749477.jpg monthly_07_2007/post-2223-1184749489.jpgmonthly_07_2007/post-2223-1184749495.jpgmonthly_07_2007/post-2223-1184749500.jpgВнутренний шум измерялся на тех же режимах работы двигателя тоже в двух точках — в районе головы водителя и в области голов задних пассажиров. Естественно, все измерения проводились с закрытыми дверями и окнами. Результаты испытаний не стали сюрпризом. Сказать, что прямоточный глушитель по сравнению со штатным совсем не прибавляет мотору мощности, нельзя. Все оконечные глушители дают несколько процентов прибавки на средних и высоких оборотах двигателя. “Внизу” эта прибавка либо меньше, либо вовсе никакая. Полные системы с “пауком” вместо штатного коллектора, большими трубами и без катализатора прибавляют больше мощности. Наиболее заметно это на высоких оборотах, где мотору особенно необходимо свободное дыхание. Однако прирост все равно не поражает воображение. Максимум — около семи процентов прироста мощности на высоких оборотах. Причем использование 60-миллиметровой трубы не дает преимущества по сравнению с 54-миллиметровой. Полуторалитровому моторчику со стандартными настройками и распредвалами столько просто не надо... Итак, мощность увеличивается незначительно — в лучшем случае на 3—5 л.с. Зато как растет шум! Если по уровню внутреннего шума некоторые глушители еще могут сравниться со штатным, то снаружи все протестированные образцы голосят безбожно. На первый взгляд может показаться, что прибавка в шесть-десять децибел (относительно звука стандартного глушителя) невелика — те же несколько процентов, что и в случае с мощностью. Но не надо забывать, что звуковое давление измеряется не по линейной, а по логарифмической шкале. И при пересчете получаются уже не проценты, а разы! Попросту говоря, на некоторых режимах автомобиль с прямоточной системой шумит как десять стандартных “двенадцатых”! О том, почему так происходит — в отдельной заметке на этих страницах. Так стоит ли тратиться на прямоточный глушитель? Очевидно, что ответ на этот вопрос лежит в области личных предпочтений. Вы отдаете приоритет скорости и динамике автомобиля? Тогда лучше потратить эти средства на другие компоненты тюнинга, например, на хорошие тормозные колодки. Если же для вас основная цель — произвести на светофоре впечатление на окружающих или подзадорить самого себя, то “прямоток” для этого подходит прекрасно. Главное, чтобы после старта вам удалось продемонстрировать соперникам хромированное дуло своего оружия... ТАК ДАВАЙТЕ ДЛЯ НАЧАЛА РАЗБЕРЕМСЯ, ГДЕ ЖЕ ЛЕЖИТ ЭТА ДОБАВОЧНАЯ МОЩНОСТЬ. И ПОЧЕМУ ВЫПУСКНОЙ ТРАКТ ВЛИЯЕТ НА РАБОТУ МОТОРА. Если мы все дружно понимаем, что мощность есть произведение вращающего момента на скорость вращения коленчатого вала (обороты), то понятно, что мощность - зависимая от скорости величина. Рассмотрим чисто теоретический двигатель (не важно, электрический он, внутреннего сгорания или турбореактивный), который отдает постоянный вращающий момент на оборотах от 0 до бесконечности, (кривая 2 на рис. ниже) Тогда его мощность будет линейно расти с оборотами от 0 до бесконечности (кривая 1 на рис. ниже). Предмет нашего интереса - четырехтактные многоцилиндровые двигатели внутреннего сгорания в силу конструкции и процессов, в них происходящих, имеют рост момента с увеличением оборотов до его максимальной величины, и с дальнейшим увеличением оборотов момент снова падает (кривая 3 на рис. ниже). Тогда и мощность будет иметь аналогичный вид (кривая 4 на рис. ниже). monthly_07_2007/post-2223-1184749702.gifВажным обстоятельством для понимания функций выпускной системы является связь вращающего момента с коэффициентом наполнения цилиндра. Давайте себе представим процесс, происходящий в цилиндре в фазе впуска. Предположим, коленчатый вал двигателя вращается настолько медленно, что мы можем наблюдать движение топливовоздушной смеси в цилиндре и в любой момент времени давление во впускном трубопроводе и цилиндре успевает выравниваться. Предположим, что в верхней мертвой точке (ВМТ) давление в камере сгорания равно атмосферному. Тогда при движении поршня из ВМТ в нижнюю мертвую точку (НМТ) в цилиндр попадет количество свежей топливовоздушной смеси, точно равное объему цилиндра. Говорят, что в таком случае коэффициент наполнения равен единице. Предположим, что в вышеописанном процессе мы закроем впускной клапан в положении поршня, соответствующем 80% его хода. Тогда мы наполним цилиндр только на 80% его объема и масса заряда составит соответственно 80%. Коэффициент наполнения в таком случае будет 0,8. Другой случай. Пусть некоторым образом нам удалось во впускном коллекторе создать давление на 20% выше атмосферного. Тогда в фазе впуска мы сможем наполнить цилиндр на 120% по массе заряда, что будет соответствовать коэффициенту наполнения 1,2. Так, теперь самое главное. Вращающий момент двигателя совершенно точно на кривой момента соответствует коэффициенту наполнения цилиндра. То есть вращающий момент там выше, где коэффициент наполнения выше, и ровно во столько же раз, если, конечно, мы не учитываем внутренние потери в двигателе, которые растут со скоростью вращения. Из этого понятно, что o кривую момента и, соответственно, кривую мощности определяет зависимость коэффициента наполнения от оборотов. У нас есть возможность влиять в некоторых пределах на зависимость коэффициента наполнения от скорости вращения двигателя с помощью изменения фаз газораспределения. В общем случае, не вдаваясь в подробности, можно сказать, что чем шире фазы и чем в более раннюю по отношению к коленчатому валу область мы их сдвигаем, тем на больших оборотах будет достигнут максимум вращающего момента. Абсолютное значение максимального момента при этом будет немного меньше, чем с более узкими фазами (кривая 5 на рис. выше). Существенное значение имеет так называемая фаза перекрытия. Дело в том, что при высокой скорости вращения определенное влияние оказывает инерция газов в двигателе. Для лучшего наполнения в конце фазы выпуска выпускной клапан надо закрывать несколько позже ВМТ, а впускной открывать намного раньше ВМТ. Тогда у двигателя появляется состояние, когда в районе ВМТ при минимальном объеме над поршнем оба клапана открыты и впускной коллектор сообщается с выпускным через камеру сгорания. Это очень важное состояние в смысле влияния выпускной системы на работу двигателя. Теперь, я думаю, пора рассмотреть функции выпускной системы. Сразу скажу, что в выпускной системе присутствует три процесса. Первый - сдемпфированное в той или иной степени истечение газов по трубам. Второй - гашение акустических волн с целью уменьшения шума. И третий - распространение ударных волн в газовой среде. Любой из названных процессов мы будем рассматривать с позиции его влияния на коэффициент наполнения. Строго говоря, нас интересует давление в коллекторе у выпускного клапана в момент его открытия. Понятно, что чем меньшее давление, а лучше даже ниже атмосферного, удастся получить, тем больше будет перепад давления от впускного коллектора к выпускному, тем больший заряд получит цилиндр в фазе впуска. Начнем с достаточно очевидных вещей. Выпускная труба служит для отвода выхлопных газов за пределы кузова автомобиля. Совершенно понятно, что она не должна на оказывать существенного сопротивления потоку. Если по какой-то причине в выпускной трубе появился посторонний предмет, закрывающий поток газов (например, соседи пошутили и засунули в выхлопную трубу картошку), то давление в выпускной трубе не будет успевать падать, и в момент открытия выпускного клапана давление в коллекторе будет противодействовать очистке цилиндра. Коэффициент наполнения упадет, так как оставшееся большое количество отработанных газов не позволит наполнить цилиндры в прежней степени свежей смесью. Соответственно, двигатель не сможет вырабатывать прежний вращающий момент. Весьма важно понимать, что размеры трубы и конструкция глушителей шума в серийном автомобиле достаточно хорошо соответствуют количеству отработанных газов, вырабатываемых двигателем в единицу времени. Как только серийный двигатель подвергся изменениям с целью увеличения мощности (будь то увеличение рабочего объема или увеличение момента на высоких оборотах), сразу увеличивается расход газа через выпускную трубу и следует ответить на вопрос, а не создает ли теперь в новых условиях избыточного сопротивления серийная выпускная система. Так что из рассмотрения первого процесса, обозначенного нами, следует сделать вывод о достаточности размеров труб. Совершенно понятно, что после некоторого разумного размера увеличивать сечение труб для конкретного двигателя бессмысленно, улучшения не будет. А отвечая на вопрос, где же мощность, можно сказать, что тут главное не потерять, прибрести же ничего невозможно. Из практики могу сказать, что для двигателя объемом 1600 куб.см, имеющего хороший вращающий момент до 8000 об./мин., вполне достаточно трубы диаметром 52 мм. Как только мы говорим о сопротивлении в выпускной системе, необходимо упомянуть о таком важном элементе, как глушитель шума. Так как в любом случае глушитель создает сопротивление потоку, то можно сказать, что лучший глушитель - полное его отсутствие. К сожалению, для дорожного автомобиля это могут себе позволить только отчаянные хамы. Борьба с шумом - это, как ни верти, забота о нашем с вами здоровье. Не только в повседневной жизни, но и в автоспорте действуют ограничения на шум, производимый двигателем автомобиля. Должен сказать, что в большинстве классов спортивных автомобилей шум выпуска ограничен уровнем 100 дб. Это довольно лояльные условия, но без глушителя ни один автомобиль не будет соответствовать техтребованиям и не сможет быть допущенным к соревнованиям. Поэтому выбор глушителя - всегда компромисс между его способностью поглощать звук и низким сопротивлением потоку. ТЕПЕРЬ, НАВЕРНОЕ, СЛЕДУЕТ ПРЕДСТАВИТЬ СЕБЕ, КАКИМ ОБРАЗОМ ЗВУК ГАСИТСЯ В ГЛУШИТЕЛЕ. Акустические волны (шум) несут в себе энергию, которая возбуждает наш слух. Задача глушителя состоит в том, чтобы энергию колебаний перевести в тепловую. По способу работы глушители надо разделить на четыре группы. Это ограничители, отражатели, резонаторы и поглотители. ОГРАНИЧИТЕЛЬ Принцип его работы прост. В корпусе глушителя имеется существенное заужение диаметра трубы некое акустическое сопротивление, а за ним сразу большой объем, аналог емкости. Продавливая через сопротивление звук, мы колебания сглаживаем объемом. Энергия рассеивается в дросселе, нагревая газ. Чем больше сопротивление (меньше отверстие), тем эффективней сглаживание. Но тем больше сопротивление потоку. Наверное, плохой глушитель. Однако в качестве предварительного глушителя в системе - довольно распространенная конструкция. monthly_07_2007/post-2223-1184749750.gifОТРАЖАТЕЛЬВ корпусе глушителя организуется большое количество акустических зеркал, от которых звуковые волны отражаются. Известно, что при каждом отражении часть энергии теряется, тратится на нагрев зеркала. Если устроить для звука целый лабиринт из зеркал, то в конце концов мы рассеем почти всю энергию и наружу выйдет весьма ослабленный звук. По такому принципу строятся пистолетные глушители. Значительно лучшая конструкция, однако так как в недрах корпуса мы заставим также газовый поток менять направление, то все равно создадим некоторое сопротивление выхлопным газам. Такая конструкция чаще всего применяется в оконечных глушителях стандартных системmonthly_07_2007/post-2223-1184749774.gifРЕЗОНАТОРГлушители резонаторного типа используют замкнутые полости, расположенные рядом с трубопроводом и соединенные с ним рядом отверстий. Часто в одном корпусе бывает два неравных объема, разделенных глухой перегородкой. Каждое отверстие месте с замкнутой полостью является резонатором, возбуждающим колебания собственной частоты. Условия распространения резонансной частоты резко меняются, и она эффективно гасится вследствие трения частиц газа в отверстии. Такие глушители эффективно в малых размерах гасят низкие частоты и применяются в основном в качестве предварительных, первых в выпускных системах. Существенного сопротивления потоку не оказываю, т.к. сечение не уменьшают. monthly_07_2007/post-2223-1184749799.gifПОГЛОТИТЕЛЬ Способ работы поглотителей заключается в поглощении акустических волн неким пористым материалом. Если мы звук направим, например, в стекловату, то он вызовет колебания волокон ваты и трение волокон друг о друга. Таким образом, звуковые колебания будут преобразованы в тепло. Поглотители позволяют построить конструкцию глушителя без уменьшения сечения трубопровода и даже без изгибов, окружив трубу с прорезанными в ней отверстиями слоем поглощающего материала. Такой глушитель будет иметь минимально возможное сопротивление потоку, однако и хуже всего снижает шум. Надо сказать, что серийные выпускные системы используют в большинстве случаев различные комбинации всех приведенных способов. Глушителей в системе бывает два, а иногда и больше. Следует обратить внимание на особенность конструкций глушителей, которая в случае самостоятельного изготовления не позволяет достичь эффективного снижения шума, хотя кажется, что все сделано правильно. Если внутри глушителя у его стенок нет поглощающего материала, то источником звука становятся стенки корпуса. Многие замечали, что некоторые глушители имеют снаружи асбестовую обкладку, прижатую дополнительным листом фальшкорпуса. Это и есть та мера, которая позволит ограничить излучение через стенки и предотвратить нагрев соседних элементов автомобиля. Такая мера характерна для глушителей первого и второго типов. Есть еще одно обстоятельство, которое нельзя обойти вниманием в статье о тюнинге. Это тембр звука. Часто пожелания клиента к тюнинговой компании состоят в том, чтобы посредством замены глушителя добиться "благородного" звучания мотора. Надо заметить, что если требования к выпускной системе не распространяются дальше изменения "голоса", то задача существенно упрощается. Можно сказать, что, вероятнее всего, для таких целей больше подходит глушитель поглотительного типа. Его объем, количество набивки, а также сама набивка определяют спектр частот, интенсивно поглощаемых. Практически любая мягкая набивка поглощает в большей степени высокочастотную составляющую, придавая бархатистость звуку. Глушители резонаторного типа гасят низкие частоты. Таким образом, варьируя размеры, содержимое и набор элементов, можно подобрать тембр звучания. ТЕПЕРЬ МОЖНО ПЕРЕЙТИ К ВОПРОСУ, НАИБОЛЕЕ ПОПУЛЯРНОМУ И БОЛЕЕ СЛОЖНОМУ. КАКИМ ОБРАЗОМ ДВИГАТЕЛЬ БЛАГОДАРЯ НАСТРОЙКЕ ВЫПУСКНОЙ СИСТЕМЫ МОЖЕТ ПОЛУЧИТЬ ДОПОЛНИТЕЛЬНУЮ МОЩНОСТЬ?Как мы уже уяснили, коэффициент наполнения, вращающий момент и мощность зависят от перепада давления между впускным и выпускным коллекторами в фазе продувки. Выпускную систему можно построить таким образом, что распространяющиеся в трубах ударные волны, отражаясь от различных элементов системы, будут возвращаться к выпускному клапану в виде скачка давления или разрежения. Откуда же появится разрежение, спросите вы. Ведь в трубу мы всегда только нагнетаем и никогда не отсасываем. Дело в том, что в силу инерции газов за скачком давления всегда следует фронт разрежения. Именно фронт разрежения интересует нас больше всего. Нужно только сделать так, чтобы он был в нужном месте в нужное время. Место нам уже хорошо известно. Это выпускной клапан. А время нужно уточнить. Дело в том, что время действия фронта весьма незначительное. А время открытия выпускного клапана, когда фронт разрежения может создать полезную для нас работу, сильно зависит от скорости вращения двигателя. Да и весь период фазы выпуска нужно разбить на две составляющие. Первая - когда клапан только что открылся. Эта часть характеризуется большим перепадом давления и активным истечением газов в выпускной коллектор. Отработанные газы и без посторонней помощи после рабочего хода покидают цилиндр. Если в этот момент волна разрежения достигнет выпускного клапана, маловероятно, что она сможет повлиять на процесс очистки. А вот конец выпуска более интересен. Давление в цилиндре уже упало почти до атмосферного. Поршень находится около ВМТ, значит, объем над поршнем минимален. Да еще впускной клапан уже приоткрыт. Помните? Такое состояние (фаза перекрытия) характеризуется тем, что впускной коллектор через камеру сгорания сообщается с выпускным. Вот теперь, если фронт разрежения достигнет выпускного клапана, мы сможем существенно улучшить коэффициент наполнения, так как даже за короткое время действия фронта удастся продуть маленький объем камеры сгорания и создать разрежение, которое поможет разгону топливовоздушной смеси в канале впускного коллектора. А если представить себе, что как только все отработанные газы покинут цилиндр, а разрежение достигнет своего максимального значения, выпускной клапан закроется, мы сможем в фазе впуска получить заряд больший, чем если бы очистили цилиндр только до атмосферного давления. Этот процесс дозарядки цилиндров с помощью ударных волн в выпускных трубах может позволить получить высокий коэффициент наполнения и, как следствие, дополнительную мощность. Результат его действия примерно такой, как если бы мы нагнетали давление во впускном коллекторе с помощью компрессора. В конце концов, какая разница, каким образом создан перепад давления, заталкивающий свежую смесь в камеру сгорания, с помощью нагнетания со стороны впуска или разрежения в цилиндре? Такой вот процесс может вполне происходить в выпускной системе ДВС. Осталась сущая мелочь. Нужно такой процесс организовать. Первым необходимым условием дозарядки цилиндров с помощью ударных волн надо назвать существование достаточно широкой фазы перекрытия. Строго говоря, нас интересует не столько сама ширина фазы как геометрическая величина, сколько интервал времени, когда оба клапана открыты. Без особых разъяснений понятно, что при постоянной фазе с увеличением скорости вращения время уменьшается. Из этого автоматически следует, что при настройке выпускной системы на определенные обороты одним из варьируемых параметров будет ширина фазы перекрытия. Чем выше обороты настройки, тем шире нужна фаза. Из практики можно сказать, что фаза перекрытия менее 70 градусов не позволит иметь заметный эффект, а значение для настроенных на обычные 6000 об/мин систем составляет 80 - 90 градусов. Второе условие уже определили. Это необходимость вернуть к выпускному клапану ударную волну. Причем в многоцилиндровых двигателях вовсе необязательно возвращать ее в тот цилиндр, который ее сгенерировал. Более того, выгодно возвращать ее, а точнее, использовать в следующем по порядку работы цилиндре. Дело в том, что скорость распространения ударных волн в выпускных трубах - есть скорость звука. Для того чтобы возвратить ударную волну к выпускному клапану того же цилиндра, предположим, на скорости вращения 6000 об/мин, надо расположить отражатель на расстоянии примерно 3,3 метра. Путь, который пройдет ударная волна за время двух оборотов коленчатого вала при этой частоте, составляет 6,6 метра. Это путь до отражателя и обратно. Отражателем может служить, например, резкое многократное увеличение площади трубы. Лучший вариант - срез трубы в атмосферу. Или, наоборот, уменьшение сечения в виде конуса, сопла Лаваля или, совсем грубо, в виде шайбы. Однако мы договорились, что различные элементы, уменьшающие сечение, нам неинтересны. Таким образом, настроенная на 6000 об/мин выпускная система предполагаемой конструкции для, например, четырехцилиндрового двигателя будет выглядеть как четыре трубы, отходящие от выпускных окон каждого цилиндра, желательно прямые, длиной 3,3 метра каждая. У такой конструкции есть целый ряд существенных недостатков. Во-первых, маловероятно, что под кузовом, например, Гольфа длиной 4 метра или даже Ауди А6 длиной 4,8 метра возможно разместить такую систему. Опять же, глушитель все-таки нужен. Тогда мы должны концы четырех труб ввести в банку достаточно большого объема, с близкими к открытой атмосфере акустическими характеристиками. Из этой банки надо вывести газоотводную трубу, которую необходимо оснастить глушителем.Короче, такого типа система для автомобиля не подходит. Хотя справедливости ради надо сказать, что на двухтактных четырехцилиндровых мотоциклетных моторах для кольцевых гонок она применяется. Для двухтактного мотора, работающего на частоте выше 12 000 об/мин, длина труб сокращается более чем в четыре раза и составляет примерно 0,7 метра, что вполне разумно даже для мотоцикла. monthly_07_2007/post-2223-1184749895.gifmonthly_07_2007/post-2223-1184749902.gifВернемся к нашим автомобильным двигателям. Сократить геометрические размеры выпускной системы, настроенной на те же 6000 об/мин, вполне можно, если мы будем использовать ударную волну следующим по порядку работы цилиндром. Фаза выпуска в нем наступит для трехцилиндрового мотора через 240 градусов поворота коленчатого вала, для четырехцилиндрового - через 180 градусов, для шестицилиндрового - через 120 и для восьмицилиндрового - через 90. Соответственно, интервал времени, а следовательно, и длина отводящей от выпускного окна трубы пропорционально уменьшается и для, например, четырехцилиндрового двигателя сократится в четыре раза, что составит 0,82 метра. Стандартное в таком случае решение - всем известный и желанный "паук". Конструкция его проста. Четыре так называемые первичные трубы, отводящие газы от цилиндров, плавно изгибаясь и приближаясь друг к другу под небольшим углом, соединяются в одну вторичную трубу, имеющую площадь сечения в два-три раза больше, чем одна первичная. Длина от выпускных клапанов до места соединения нам уже известна - для 6000 об/мин примерно 820 мм. Работа такого "паука" состоит в том, что следующий за ударной волной скачок разрежения, достигая места соединения всех труб, начинает распространяться в обратном направлении в остальные три трубы. В следующем по порядку работы цилиндре в фазе выпуска скачок разрежения выполнит нужную для нас работу.Тут надо сказать, что существенное влияние на работу выпускной системы оказывает также длина вторичной трубы. Если конец вторичной трубы выпущен в атмосферу, то импульсы атмосферного давления будут распространяться во вторичной трубе навстречу импульсам, сгенерированным двигателем. Суть настройки длины вторичной трубы состоит в том, чтобы избежать одновременного появления в месте соединения труб импульса разрежения и обратного импульса атмосферного давления. На практике длина вторичной трубы слегка отличается от длины первичных труб. Для систем, которые будут иметь дальше глушитель, на конце вторичной трубы необходимо разместить максимального объема и максимальной площади сечения банку с поглощающим покрытием внутри. Эта банка должна как можно лучше воспроизводить акустические характеристики бесконечной величины воздушного пространства. Следующие за этой банкой элементы выпускной системы, т.е. трубы и глушители, не оказывают никакого воздействия на резонансные свойства выпускной системы. Их конструкцию, влияние на сопротивление потоку, на уровень и тембр шума мы уже обсудили. Чем ниже избыточное давление они обеспечат, тем лучше. Итак, мы уже рассмотрели два варианта построения настроенной на определенные обороты выпускной системы, которая за счет дозарядки цилиндров на оборотах резонанса увеличивает вращающий момент. Это четыре отдельные для каждого цилиндра трубы и так называемый "паук" "четыре в один". Следует также упомянуть о варианте "два в один - два в один" или "два Y", который наиболее часто встречается в тюнинговых автомобилях, так как легко компонуется в стандартные кузова и не слишком сильно отличается по размерам и форме от стандартного выпуска. Устроен он достаточно просто. Сначала трубы соединяются попарно от первого и четвертого цилиндров в одну и второго и третьего в одну как цилиндров, равноотстоящих друг от друга на 180 градусов по коленчатому валу. Две образовавшиеся трубы также соединяются в одну на расстоянии, соответствующем частоте резонанса. Расстояние измеряется от клапана по средней линии трубы. Попарно соединяющиеся первичные трубы должны соединяться на расстоянии, составляющем треть общей длины. Один из часто встречающихся вопросов, на которые приходится отвечать, это какой "паук" предпочесть. Сразу скажу, что ответить на этот вопрос однозначно нельзя. В некоторых случаях стандартный выпускной коллектор со стандартной приемной трубой работает абсолютно так же. Однако сравнить упомянутые три конструкции, несомненно, можно. Тут надо обратиться к такому понятию, как добротность. Постольку, поскольку настроенный выпуск суть есть колебательная система, резонансные свойства которой мы используем, то понятно, что ее количественная характеристика - добротность - вполне может быть разной. Она действительно разная. Добротность показывает, во сколько раз амплитуда колебаний на частоте настройки больше, чем вдали от нее. Чем она выше, тем больший перепад давления мы можем использовать, тем лучше наполним цилиндры и, соответственно, получим прибавку момента. Так как добротность - энергетическая характеристика, то она неразрывно связана с шириной резонансной зоны. Не вдаваясь в подробности, можно сказать, что если мы получим большой выигрыш по моменту, то только в узком диапазоне оборотов для высокодобротной системы. И наоборот, если диапазон оборотов, в котором достигается улучшение, велик, то по величине выигрыш незначительный, это низкодобротная система. На рис. 2 по вертикальной оси отложено давление - разрежение, получаемое в районе выпускного клапана, а по горизонтальной оси - обороты двигателя. Кривая 1 характерна для высокодобротной системы. В нашем случае это четыре раздельные трубы, настроенные на 6000 об/мин. monthly_07_2007/post-2223-1184749935.gifПервый. Так как вращающий момент пропорционален перепаду давления, то наибольший прирост даст высокодобротная система номер один. Однако в узком диапазоне оборотов. Настроенный двигатель с такой системой будет иметь ярко выраженный "подхват" в зоне резонанса. И совершенно никакой на других оборотах. Так называемый однорежимный или "самолетный" мотор. Такой двигатель, скорее всего, потребует многоступенчатую трансмиссию. Реально такие системы в автомобилях не применяются. Система второго типа имеет более "сглаженный" характер, используется в основном для кольцевых гонок. Рабочий диапазон оборотов гораздо шире, провалы меньше. Но и прирост момента меньше. Таким образом настроенный двигатель тоже не подарок, об эластичности и мечтать не приходится. Однако если главное - высокая скорость при движении, то под такой режим будет подстроена и трансмиссия, и пилот освоит способы управления. Система третьего типа еще ровнее. Диапазон рабочих оборотов достаточно широкий. Плата за такую покладистость - еще меньшая добавка момента, которую можно получить при правильной настройке. Такие системы используются для ралли, в тюнинге для дорожных автомобилей. То есть для тех автомобилей, которые ездят с частой сменой режимов движения. Для которых важен ровный вращающий момент в широком диапазоне оборотов. Второй. Как всегда, бесплатных пряников не бывает. На вдвое меньших от резонансной частоты оборотах фаза отраженной волны повернется на 180 градусов, и вместо скачка разрежения в фазе перекрытия к выпускному клапану будет приходить волна давления, которая будет препятствовать продувке, то есть сделает желаемую работу наоборот. В результате на вдвое меньших оборотах будет провал момента, причем чем большую добавку мы получим вверху, тем больше потеряем внизу. И никакими настройками системы управления двигателем невозможно скомпенсировать эту потерю. Останется только мириться с этим фактом и эксплуатировать мотор в том диапазоне, который можно признать "рабочим". Однако человечество придумало несколько способов борьбы с этим явлением. Один из них - электронноуправляемые заслонки около выходных отверстий в головке. Суть их работы состоит в том, что на низкой кратной частоте заслонка перегораживает частично выхлопной канал, препятствуя распространению ударных волн и тем самым разрушая ставший вредоносным резонанс. Выражаясь более точно, во много раз уменьшая добротность. Уменьшение сечения из-за прикрытых заслонок на низких оборотах не столь важно, так как генерируется небольшое количество выхлопных газов. Второй способ - применение так называемых коллекторов "A.R.". Их работа состоит в том, что они оказывают небольшое сопротивление потоку, когда давление в коллекторе меньше, чем у клапана, и увеличивают сопротивление, когда ситуация обратная. Третий способ - несовпадение отверстий в головке и коллекторе. Отверстие в коллекторе большего размера, чем в головке, совпадающее по верхней кромке с отверстием в головке и не совпадающее примерно на 1 - 2 мм по нижней. Суть та же, что и в случае с "A.R." конусом. Из головки в трубу - "по шерсти", обратно - "против шерсти". Два последних варианта нельзя считать исчерпывающими ввиду того, что "по шерсти" все-таки несколько хуже, чем гладкие трубы. В качестве лирического отступления могу сказать, что несовпадение отверстий - стандартное простое решение для многих серийных моторов, которое почему-то многие "тюнингаторы" считают дефектом поточного производства.monthly_07_2007/post-2223-1184750013.jpgТретий. Следствие второго. Если мы настроим выпускную систему на резонансную частоту, например 4000 об/ мин, то на 8000 об/мин получим вышеописанный "провал", если на этих оборотах система окажется работоспособной. Немаловажный аспект при рассмотрении работы настроенного выпуска - это требования к его конструкции с точки зрения акустических свойств. Первое и самое важное - в системе не должно быть других отражающих элементов, которые породят дополнительные резонансные частоты, рассеивающие энергию ударной волны по спектру. Это значит, что внутри труб должны отсутствовать резкие изменения площади сечения, выступающие внутрь углы и элементы соединения. Радиусы изгиба должны быть настолько большими, насколько позволяет компоновка мотора в автомобиле. Все расстояния по средней линии трубы от клапана до места соединения должны быть по возможности одинаковыми.Второе важное обстоятельство состоит в том, что ударная волна несет в себе энергию. Чем выше энергия, тем большую полезную работу мы можем от нее получить. Мерой энергии газа является температура. Поэтому все трубы до места их соединения лучше теплоизолировать. Обычно трубы обматывают теплостойким, как правило, асбестовым материалом и закрепляют его на трубе с помощью бандажей или стальной проволоки. Раз уж сейчас говорим о конструкции выпускной системы, нужно упомянуть о таком элементе конструкции, как гибкие соединения. Дело в том, что для переднеприводных автомобилей с поперечно расположенным силовым агрегатом существует проблема компенсации перемещений мотора относительно кузова. Так как опоры двигателя при такой компоновке принимают на себя весь реактивный момент от приводных валов ведущих колес, крены силового агрегата относительно кузова в продольном направлении могут иметь значительную величину. Конечно, величина отклонения сильно зависит от жесткости опор, однако нередко перемещения головки блока достигают величины 20 - 50 мм при переходе от торможения двигателем к разгону на низших передачах. В случае, если мы не позволим выпускной системе свободно изгибаться и сделаем ее абсолютно жесткой, конец глушителя должен будет совершать колебания вверх-вниз с амплитудой 500 - 600 мм, что определенно превышает разумную величину дорожного просвета значительной части автомобилей. Если мы попытаемся в таком случае закрепить трубу за кузов, то подвеска глушителя начнет играть роль дополнительной опоры силового агрегата и принимать на себя реактивный момент ведущих колес. В результате или непрерывно будут рваться подвесные элементы выпускной системы, или ломаться трубы. Для того чтобы избавиться от такого нежелательного явления, применяют гибкие соединения между трубами выпускной системы, позволяя приемной трубе перемещаться вместе с мотором, а всей остальной системе оставаться параллельной кузову. Есть несколько конструкций, позволяющих решить эту задачу. Две самые распространенные - гофрированная гибкая труба или шаровое соединение в виде полусферической шайбы с поджатой пружинами к ней ответной части. Гибкое соединение располагают как можно ближе к оси поворота силового агрегата на опорах, чтобы уменьшить перемещение труб относительно кузова. Для настроенных выпускных систем шаровое соединение предпочтительно. Внутренняя поверхность гофрированной вставки искажает форму трубы, что приводит к появлению паразитных частот резонанса. В качестве лирического отступления следует упомянуть, что для автомобилей такой компоновки при увеличении мощности в результате доработок двигателя и как следствие увеличения момента на передней ведущей оси, стандартные опоры силового агрегата окажутся перегруженными и позволят "прыгать" двигателю в подкапотном пространстве с размахом, вполне вероятно превышающим разумные пределы. Теперь, после того как стали ясны процессы, происходящие в выпускной системе, вполне можно перейти к практическим рекомендациям по настройке выпускных систем. Сразу скажу, что в такой работе нельзя полагаться на свои ощущения и необходимо "вооружиться" измерительной системой. Измерять она должна прямым или косвенным методом обязательно как минимум два параметра - вращающий момент и обороты двигателя. Совершенно понятно, что лучший прибор - динамометрический стенд для двигателя. Обычно поступают следующим образом. Для подготовленного к испытаниям двигателя изготавливают экспериментальную выпускную систему. Так как мотор на стенде и нет ограничений в конфигурации труб из-за отсутствующего кузова, самые простые формы вполне применимы. Экспериментальная система должна быть удобной и максимально гибкой для изменения ее состава и длин труб. Хороший и быстрый результат дают различного рода телескопические вставки, позволяющие менять длины элементов в разумных пределах. Если вы хотите добиться от вашей силовой установки максимальных параметров, вы должны быть готовы выполнить значительное количество экспериментов. Математический расчет и "попадание в яблочко" с первого раза исключите из рассмотрения, как событие чрезвычайно маловероятное. Его можно использовать как "приземление в заданном районе". Некоторую уверенность в том, что вы недалеко от истины, дают опыт и предыдущие эксперименты с аналогичными по характеристикам моторами, у которых были получены хорошие результаты. Тут, вероятно, надо остановиться и ответить на вопрос, а на какую частоту надо настраивать выпускную систему. Для этого надо определить цель. Постольку, поскольку в самом начале статьи мы решили, что будем добиваться максимальной мощности, то лучший в этом смысле вариант, если мы получим прирост момента на том участке моментной кривой, где коэффициент наполнения, а следовательно, и момент начинают существенно падать из-за высокой скорости вращения, т.е. мощность перестанет расти. Тогда небольшое приращение момента даст существенный выигрыш в мощности. См. рис. 3 . Для того, чтобы узнать эту частоту, необходимо как минимум иметь моментную кривую двигателя с ненастроенным выхлопом, т.е., например, со стандартным коллектором, открытым в атмосферу. Конечно, такие эксперименты весьма шумные и, извините за грубое слово, вонючие, однако необходимые. Некоторые меры по защите органов слуха и хорошая вентиляция позволят получить необходимые данные. Затем, когда нам станет известна частота настройки, нагружаем двигатель так, чтобы обороты стабилизировались в нужной точке кривой при на 100% открытом дросселе. monthly_07_2007/post-2223-1184750048.jpgТеперь можно начинать экспериментировать с различными приемными трубами. Цель - подобрать такую приемную трубу или "паук", а точнее ее длину, чтобы получить прирост момента на нужной частоте. При попадании в нужную точку динамометр сразу отзовется увеличением измеряемой силы. Быстрее всего результат будет получен, если использовать телескопические трубы и менять длину на работающем и нагруженном двигателе. Меры безопасности будут нелишними, так как присутствует вероятность ожога, да и работающий с полной нагрузкой двигатель опасен в смысле разрушения. Известны случаи, когда при аварии обломки блока цилиндров пробивали кузов автомобиля и влетали в кабину водителя. После того как будет найдена конфигурация "паука", можно приступать к настройке вторичной трубы аналогичным образом. Как я уже говорил, влияние всех остальных элементов выпускной системы сводится к тому, чтобы не потерять уже достигнутого. Поэтому достаточно планируемые к установке в автомобиль трубы и глушитель пристыковать к найденным и настроенным первым двум элементам и убедиться, что настройки сохранились или существенно не ухудшились. Далее можно уже приступать к проектированию и изготовлению рабочей системы, которая будет соответствовать автомобилю и разместится в предназначенном для нее туннеле кузова. Должен сказать, что работа очень большая и маловероятно, что может быть выполнена без специального оборудования. Кроме того, необходимо иметь в виду, что на параметры настройки выпускной системы оказывают влияние многие факторы. Известный авторитет в области спортивных моторов в США Smokey Yunick считает, что совместной настройке подлежит выпускная система, впускные и выпускные каналы головки, форма камеры сгорания, фазы газораспределения (распредвал), фазировка двигателя, впускной коллектор, система питания и система зажигания. Он утверждает, что любое изменение в одной из названных компонент обязательно влечет за собой перенастройку всех остальных для того, чтобы в худшем случае не навредить, а в лучшем достичь большей эффективности мотора. Как минимум понятно, что в фазе перекрытия, когда настроенная выпускная система выполняет полезную работу, мы имеем дело со сквозным потоком газов из впускного в выпускной коллектор через камеру сгорания. Впускной коллектор точно так же, как и выпускная система, может рассматриваться как колебательная акустическая система со своими резонансными свойствами. Так как цель настройки состоит в получении максимального перепада давления, роль впускного коллектора, а точнее его геометрии, очевидна. Ее влияние для моторов с широкой фазой перекрытия может оказаться меньше, чем от выпуска в силу меньшей энергетики, однако совместная настройка категорически необходима. Для узкофазных моторов (читай - серийных) настройка впускного коллектора, пожалуй, единственный способ получить резонансный наддув.Пару слов хотелось бы сказать о разнице в настройке впрыскного и карбюраторного моторов. Во-первых, у впрыскного мотора конструкция впускного коллектора может быть любая, так как мы не связаны с конструктивными особенностями карбюратора, а значит, возможности настройки гораздо шире. Во-вторых, у него на кратных частотах отрицательное влияние обратного перепада давления существенно ниже. Карбюратор на любое движение воздуха в диффузоре распыляет топливо. Поэтому для кратных частот характерно переобогащение смеси из-за того, что один и тот же объем воздуха сначала движется через карбюратор из камеры сгорания к фильтру, а затем в том же такте обратно. В случае электронной системы впрыска количество топлива может быть строго отрегулировано с помощью программы управления. Также программируемый угол опережения зажигания может помочь уменьшить на этих оборотах вредное влияние обратной волны, не говоря уже об управлении теми заслонками на выхлопе, которые уже упоминались. И в-третьих, требование качественного приготовления смеси на низких оборотах диктует необходимость применять сужающееся сечение в карбюраторе, известное как диффузор, что создает дополнительное сопротивление потоку на высоких оборотах. Ради справедливости надо сказать, что горизонтальные сдвоенные карбюраторы Вебер, Деллерто или Солекс частично решают эту проблему, позволяя каждому цилиндру дать трубу необходимой длины с целью настройки на нужные обороты, иметь достаточно большое сечение, но с переобогащением все равно бороться не в силах. Есть еще один прием, позволяющий повысить эффективность выпускной системы. Применяется он в основном в тюнинге, так как при определенных эстетических наклонностях конструктора позволяет создать броский внешний вид автомобиля. Где-нибудь, как минимум на фотографиях авто американских любителей, вы наверняка видели автомобили с поднятыми из-под заднего бампера чуть ли не до крыши концами выпускных труб. Идея такой конструкции состоит в том, что при движении за задним срезом автомобиля создается "воздушный мешок", или зона разрежения. Если найти то место, где разрежение максимально, и конец выхлопной трубы поместить в эту точку, то уровень статического давления внутри выпускной системы мы понизим. Соответственно статический уровень давления у выпускного клапана упадет на ту же величину. Постольку, поскольку коэффициент наполнения тем выше, чем ниже давление у выпускного клапана, такое решение можно считать удачным.В заключение хочу сказать, что при кажущейся простоте установка другой, отличной от серийной выпускной системы, как бы она ни была похожа на то, что применяется в спорте, вовсе не гарантирует вашему автомобилю дополнительных лошадиных сил. Если у вас нет возможности провести настройки для вашего конкретного варианта мотора, то самый разумный путь состоит в том, что вы купите полный комплект комплектующих для доработки мотора у того, кто эти испытания уже выполнил и заранее знает результат. Вероятно, комплект должен включать в себя как минимум распредвал, впускной и выпускной коллекторы и программу для вашего блока управления двигателем
Ссылка на комментарий
Поделиться на другие сайты

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйте новый аккаунт в нашем сообществе. Это очень просто!

Регистрация нового пользователя

Войти

Уже есть аккаунт? Войти в систему.

Войти
  • Сейчас на странице   0 пользователей онлайн

    • Ни одного зарегистрированного пользователя не просматривает данную страницу

×
×
  • Создать...